All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Properties of slowly rotating asteroids from the Convex Inversion Thermophysical Model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10437348" target="_blank" >RIV/00216208:11320/21:10437348 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=h39PjOwHKu" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=h39PjOwHKu</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1051/0004-6361/202140991" target="_blank" >10.1051/0004-6361/202140991</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Properties of slowly rotating asteroids from the Convex Inversion Thermophysical Model

  • Original language description

    Context. Recent results for asteroid rotation periods from the TESS mission showed how strongly previous studies have underestimated the number of slow rotators, revealing the importance of studying those targets. For most slowly rotating asteroids (those with P &gt; 12 h), no spin and shape model is available because of observation selection effects. This hampers determination of their thermal parameters and accurate sizes. Also, it is still unclear whether signatures of different surface material properties can be seen in thermal inertia determined from mid-infrared thermal flux fitting. Aims. We continue our campaign in minimising selection effects among main belt asteroids. Our targets are slow rotators with low light-curve amplitudes. Our goal is to provide their scaled spin and shape models together with thermal inertia, albedo, and surface roughness to complete the statistics. Methods. Rich multi-apparition datasets of dense light curves are supplemented with data from Kepler and TESS spacecrafts. In addition to data in the visible range, we also use thermal data from infrared space observatories (mainly IRAS, Akari and WISE) in a combined optimisation process using the Convex Inversion Thermophysical Model. This novel method has so far been applied to only a few targets, and therefore in this work we further validate the method itself. Results. We present the models of 16 slow rotators, including two updated models. All provide good fits to both thermal and visible data.The obtained sizes are on average accurate at the 5% precision level, with diameters found to be in the range from 25 to 145 km. The rotation periods of our targets range from 11 to 59 h, and the thermal inertia covers a wide range of values, from 2 to &lt;400 J m(-2) s(-1/2) K-1, not showing any correlation with the period. Conclusions. With this work we increase the sample of slow rotators with reliable spin and shape models and known thermal inertia by 40%. The thermal inertia values of our sample do not display a previously suggested increasing trend with rotation period, which mightbe due to their small skin depth.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

    <a href="/en/project/GA20-08218S" target="_blank" >GA20-08218S: Machine learning algorithms applied to asteroid shape reconstruction in the era of big data</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Astronomy &amp; Astrophysics

  • ISSN

    0004-6361

  • e-ISSN

  • Volume of the periodical

    654

  • Issue of the periodical within the volume

    říjen

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    32

  • Pages from-to

    A87

  • UT code for WoS article

    000707444000011

  • EID of the result in the Scopus database

    2-s2.0-85117448182