Travelling on Graphs with Small Highway Dimension
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10437395" target="_blank" >RIV/00216208:11320/21:10437395 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1cNq0XaSQN" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1cNq0XaSQN</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00453-020-00785-5" target="_blank" >10.1007/s00453-020-00785-5</a>
Alternative languages
Result language
angličtina
Original language name
Travelling on Graphs with Small Highway Dimension
Original language description
We study the Travelling Salesperson (TSP) and the Steiner Tree problem (STP) in graphs of low highway dimension. This graph parameter roughly measures how many central nodes are visited by all shortest paths of a certain length. It has been shown that transportation networks, on which TSP and STP naturally occur for various applications in logistics, typically have a small highway dimension. While it was previously shown that these problems admit a quasi-polynomial time approximation scheme on graphs of constant highway dimension, we demonstrate that a significant improvement is possible in the special case when the highway dimension is 1. Specifically, we present a fully-polynomial time approximation scheme (FPTAS). We also prove that both TSP and STP are weakly NP-hard for these restricted graphs.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GX19-27871X" target="_blank" >GX19-27871X: Efficient approximation algorithms and circuit complexity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Algorithmica
ISSN
0178-4617
e-ISSN
—
Volume of the periodical
83
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
19
Pages from-to
1352-1370
UT code for WoS article
000617411600001
EID of the result in the Scopus database
2-s2.0-85100986220