A note on Padé approximants of tensor logarithm with application to Hencky-type hyperelasticity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438136" target="_blank" >RIV/00216208:11320/21:10438136 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=NlCzUpIGXq" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=NlCzUpIGXq</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00466-020-01915-0" target="_blank" >10.1007/s00466-020-01915-0</a>
Alternative languages
Result language
angličtina
Original language name
A note on Padé approximants of tensor logarithm with application to Hencky-type hyperelasticity
Original language description
We show that the logarithmic (Hencky) strain and its derivatives can be approximated, in a straightforward manner and with a high accuracy, using Padé approximants of the tensor (matrix) logarithm. Accuracy and computational efficiency of the Padé approximants are favourably compared to an alternative approximation method employing the truncated Taylor series. As an application, Hencky-type hyperelasticity models are considered, in which the elastic strain energy is expressed in terms of the Hencky strain, and of our particular interest is the anisotropic energy quadratic in the Hencky strain. Finite-element computations are carried out to examine performance of the Padé approximants of tensor logarithm in Hencky-type hyperelasticity problems. A discussion is also provided on computation of the stress tensor conjugate to the Hencky strain in a general anisotropic case.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA18-12719S" target="_blank" >GA18-12719S: Thermodynamical and mathematical analysis of flows of complex fluids</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computational Mechanics
ISSN
0178-7675
e-ISSN
—
Volume of the periodical
68
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
14
Pages from-to
619-632
UT code for WoS article
000566065900001
EID of the result in the Scopus database
2-s2.0-85090141964