Automated Online Experiment-Driven Adaptation-Mechanics and Cost Aspects
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438279" target="_blank" >RIV/00216208:11320/21:10438279 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DHoE5qH6sk" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DHoE5qH6sk</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2021.3071809" target="_blank" >10.1109/ACCESS.2021.3071809</a>
Alternative languages
Result language
angličtina
Original language name
Automated Online Experiment-Driven Adaptation-Mechanics and Cost Aspects
Original language description
As modern software-intensive systems become larger, more complex, and more customizable, it is desirable to optimize their functionality by runtime adaptations. However, in most cases it is infeasible to fully model and predict their behavior in advance, which is a classical requirement of runtime self-adaptation. To address this problem, we propose their self-adaptation based on a sequence of online experiments carried out in a production environment. The key idea is to evaluate each experiment by data analysis and determine the next potential experiment via an optimization strategy. The feasibility of the approach is illustrated on a use case devoted to online self-adaptation of traffic navigation where Bayesian optimization, grid search, and local search are employed as the optimization strategies. Furthermore, the cost of the experiments is discussed and three key cost components are examined-time cost, adaptation cost, and endurability cost.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/8A18006" target="_blank" >8A18006: Aggregate Farming in the Cloud</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Access [online]
ISSN
2169-3536
e-ISSN
—
Volume of the periodical
9
Issue of the periodical within the volume
April 2021
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
58079-58087
UT code for WoS article
000641942600001
EID of the result in the Scopus database
2-s2.0-85104208910