Small Circuits and Dual Weak PHP in the Universal Theory of p-time Algorithms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438445" target="_blank" >RIV/00216208:11320/21:10438445 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=~8AG28_9ok" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=~8AG28_9ok</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3446207" target="_blank" >10.1145/3446207</a>
Alternative languages
Result language
angličtina
Original language name
Small Circuits and Dual Weak PHP in the Universal Theory of p-time Algorithms
Original language description
We prove, under a computational complexity hypothesis, that it is consistent with the true universal theory of p-time algorithms that a specific p-time function extending n bits to m >= n(2) bits violates the dual weak pigeonhole principle: Every string y is an element of {0, 1}(m) equals the value of the function for some x is an element of{0, 1}(n). The function is the truth-table function assigning to a circuit the table of the function it computes and the hypothesis is that every language in P has circuits of a fixed polynomial size n(d).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ACM Transactions on Computational Logic
ISSN
1529-3785
e-ISSN
—
Volume of the periodical
22
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
4
Pages from-to
11
UT code for WoS article
000732410300004
EID of the result in the Scopus database
2-s2.0-85122629441