Injective Colouring for H-Free Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438622" target="_blank" >RIV/00216208:11320/21:10438622 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-030-79416-3_2" target="_blank" >https://doi.org/10.1007/978-3-030-79416-3_2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-79416-3_2" target="_blank" >10.1007/978-3-030-79416-3_2</a>
Alternative languages
Result language
angličtina
Original language name
Injective Colouring for H-Free Graphs
Original language description
A function c:????(????)->{1,2,...,????} is a k-colouring of a graph G if c (u) is not equal to c(v) whenever u and v are adjacent. If any two colour classes induce the disjoint union of vertices and edges, then c is called injective. Injective colourings are also known as L(1, 1)-labellings and distance 2-colourings. The corresponding decision problem is denoted Injective Colouring. A graph is H-free if it does not contain H as an induced subgraph. We prove a dichotomy for Injective Colouring for graphs with bounded independence number. Then, by combining known with further new results, we determine the complexity of Injective Colouring on H-free graphs for every H except for one missing case.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Computer Science – Theory and Applications
ISBN
978-3-030-79415-6
ISSN
0302-9743
e-ISSN
—
Number of pages
13
Pages from-to
18-30
Publisher name
Springer
Place of publication
Švýcarsko
Event location
Sochi
Event date
Jun 28, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—