Fast galaxy bars continue to challenge standard cosmology
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438801" target="_blank" >RIV/00216208:11320/21:10438801 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2xLVwSUFJZ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2xLVwSUFJZ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/mnras/stab2553" target="_blank" >10.1093/mnras/stab2553</a>
Alternative languages
Result language
angličtina
Original language name
Fast galaxy bars continue to challenge standard cosmology
Original language description
Many observed disc galaxies harbour a central bar. In the standard cosmological paradigm, galactic bars should be slowed down by dynamical friction from the dark matter halo. This friction depends on the galaxy's physical properties in a complex way, making it impossible to formulate analytically. Fortunately, cosmological hydrodynamical simulations provide an excellent statistical population of galaxies, letting us quantify how simulated galactic bars evolve within dark matter haloes. We measure bar strengths, lengths, and pattern speeds in barred galaxies in state-of-the-art cosmological hydrodynamical simulations of the IllustrisTNG and EAGLE projects, using techniques similar to those used observationally. We then compare our results with the largest available observational sample at redshift z = 0. We show that the tension between these simulations and observations in the ratio of corotation radius to bar length is 12.62 sigma (TNG50), 13.56 sigma (TNG100), 2.94 sigma (EAGLE50), and 9.69 sigma (EAGLE100), revealing for the first time that the significant tension reported previously persists in the recently released TNG50. The lower statistical tension in EAGLE50 is actually caused by it only having five galaxies suitable for our analysis, but all four simulations give similar statistics for the bar pattern speed distribution. In addition, the fraction of disc galaxies with bars is similar between TNG50 and ING100, though somewhat above EAGLE100. The simulated bar fraction and its trend with stellar mass both differ greatly from observations. These dramatic disagreements cast serious doubt on whether galaxies actually have massive cold dark matter haloes, with their associated dynamical friction acting on galactic bars.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10308 - Astronomy (including astrophysics,space science)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Monthly Notices of the Royal Astronomical Society
ISSN
0035-8711
e-ISSN
—
Volume of the periodical
508
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
14
Pages from-to
926-939
UT code for WoS article
000741285400028
EID of the result in the Scopus database
2-s2.0-85118071735