Linear Layouts of Complete Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439087" target="_blank" >RIV/00216208:11320/21:10439087 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-030-92931-2_19" target="_blank" >https://doi.org/10.1007/978-3-030-92931-2_19</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-92931-2_19" target="_blank" >10.1007/978-3-030-92931-2_19</a>
Alternative languages
Result language
angličtina
Original language name
Linear Layouts of Complete Graphs
Original language description
A page (queue) with respect to a vertex ordering of a graph is a set of edges such that no two edges cross (nest), i.e., have their endpoints ordered in an abab-pattern (abba-pattern). A union page (union queue) is a vertex-disjoint union of pages (queues). The union page number (union queue number) of a graph is the smallest k such that there is a vertex ordering and a partition of the edges into k union pages (union queues). The local page number (local queue number) is the smallest k for which there is a vertex ordering and a partition of the edges into pages (queues) such that each vertex has incident edges in at most k pages (queues). We present upper and lower bounds on these four parameters for the complete graph Kn on n vertices. In three cases we obtain the exact result up to an additive constant. In particular, the local page number of Kn is n/ 3 +- O(1 ), while its local and union queue number is (1-1/2)n+-O(1). The union page number of Kn is between n/ 3 - O(1 ) and 4 n/ 9 + O(1 ). (C) 2021, Springer Nature Switzerland AG.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Graph Drawing and Network Visualization
ISBN
978-3-030-92930-5
ISSN
0302-9743
e-ISSN
—
Number of pages
14
Pages from-to
257-270
Publisher name
Springer Science and Business Media Deutschland GmbH
Place of publication
Neuveden
Event location
Tuebingen
Event date
Sep 14, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—