All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Recalculation of error growth models' parameters for the ECMWF forecast system

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439264" target="_blank" >RIV/00216208:11320/21:10439264 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=YhgX5oH_bk" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=YhgX5oH_bk</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5194/gmd-14-7377-2021" target="_blank" >10.5194/gmd-14-7377-2021</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Recalculation of error growth models' parameters for the ECMWF forecast system

  • Original language description

    This article provides a new estimate of error growth models&apos; parameters approximating predictability curves and their differentials, calculated from data of the ECMWF forecast system over the 1986 to 2011 period. Estimates of the largest Lyapunov exponent are also provided, along with model error and the limit value of the predictability curve. The proposed correction is based on the ability of the Lorenz (2005) system to simulate the predictability curve of the ECMWF forecasting system and on comparing the parameters estimated for both these systems, as well as on comparison with the largest Lyapunov exponent (lambda = 0:35 d(-1)) and limit value of the predictability curve (E-infinity = 8:2) of the Lorenz system. Parameters are calculated from the quadratic model with and without model error, as well as by the logarithmic, general, and hyperbolic tangent models. The average value of the largest Lyapunov exponent is estimated to be in the &lt; 0.32; 0.41 &gt; d(-1) range for the ECMWF forecasting system; limit values of the predictability curves are estimated with lower theoretically derived values, and a new approach for the calculation of model error based on comparison of models is presented.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10509 - Meteorology and atmospheric sciences

Result continuities

  • Project

    <a href="/en/project/GA19-16066S" target="_blank" >GA19-16066S: Nonlinear interactions and information transfer in complex systems with extreme events</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Geoscientific Model Development

  • ISSN

    1991-959X

  • e-ISSN

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    13

  • Pages from-to

    7377-7389

  • UT code for WoS article

    000724552800001

  • EID of the result in the Scopus database