All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Topologically inequivalent quantizations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439639" target="_blank" >RIV/00216208:11320/21:10439639 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=wZ3QfL41Se" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=wZ3QfL41Se</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aop.2021.168641" target="_blank" >10.1016/j.aop.2021.168641</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Topologically inequivalent quantizations

  • Original language description

    We discuss the representations of the algebra of quantization, the canonical commutation relations, in a scalar quantum field theory with spontaneously broken U(1) internal symmetry, when a topological defect of the vortex type is formed via the con-densation of Nambu-Goldstone particles. We find that the usual thermodynamic limit is not necessary in order to have the in-equivalent representations needed for the existence of physically disjoint, stable phases of the system. This points to a novel no-tion of spontaneous symmetry breaking, one where the volume can stay finite, an instance that makes our treatment substan-tially different from the usual semiclassical (NOLGA) approach to vortices. This new type of inequivalence is different from the well-known inequivalence occurring for the quantum particle on the circle. We finally comment on possible applications to quantum gravity. (c) 2021 Elsevier Inc. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10300 - Physical sciences

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Annals of Physics

  • ISSN

    0003-4916

  • e-ISSN

  • Volume of the periodical

    434

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

    168641

  • UT code for WoS article

    000709903600005

  • EID of the result in the Scopus database

    2-s2.0-85117087703