All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A cellular automaton model for a pedestrian flow problem

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439831" target="_blank" >RIV/00216208:11320/21:10439831 - isvavai.cz</a>

  • Alternative codes found

    RIV/44555601:13440/21:43896182 RIV/68407700:21340/21:00350068

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VaDu6raV44" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VaDu6raV44</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1051/mmnp/2021002" target="_blank" >10.1051/mmnp/2021002</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A cellular automaton model for a pedestrian flow problem

  • Original language description

    The evacuation phenomena in the two dimensional pedestrian flow model are simulated. The intended direction of the escape of pedestrians in panic situations is governed by the Eikonal equation of the pedestrian flow model. A new two-dimensional Cellular Automaton (CA) model is proposed for the simulation of the pedestrian flow. The solution of the Eikonal equation is used to define the probability matrix whose elements express the probability of a pedestrian moving in finite set of directions. The novelty of this paper lies in the construction of the density dependent probability matrix. The relevant evacuation scenarios are numerically solved. Predictions of the evacuation behavior of pedestrians, for various room geometries with multiple exits, are demonstrated. The mathematical model is numerically justified by comparison of CA approach with the Finite Volume Method for the space discretization and Discontinuous Galerkin Method for the implicit time discretization of pedestrian flow model.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematical Modelling of Natural Phenomena

  • ISSN

    0973-5348

  • e-ISSN

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    March 3, 2021

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    18

  • Pages from-to

    11

  • UT code for WoS article

    000626127800005

  • EID of the result in the Scopus database

    2-s2.0-85102122438