A cellular automaton model for a pedestrian flow problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439831" target="_blank" >RIV/00216208:11320/21:10439831 - isvavai.cz</a>
Alternative codes found
RIV/44555601:13440/21:43896182 RIV/68407700:21340/21:00350068
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VaDu6raV44" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VaDu6raV44</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/mmnp/2021002" target="_blank" >10.1051/mmnp/2021002</a>
Alternative languages
Result language
angličtina
Original language name
A cellular automaton model for a pedestrian flow problem
Original language description
The evacuation phenomena in the two dimensional pedestrian flow model are simulated. The intended direction of the escape of pedestrians in panic situations is governed by the Eikonal equation of the pedestrian flow model. A new two-dimensional Cellular Automaton (CA) model is proposed for the simulation of the pedestrian flow. The solution of the Eikonal equation is used to define the probability matrix whose elements express the probability of a pedestrian moving in finite set of directions. The novelty of this paper lies in the construction of the density dependent probability matrix. The relevant evacuation scenarios are numerically solved. Predictions of the evacuation behavior of pedestrians, for various room geometries with multiple exits, are demonstrated. The mathematical model is numerically justified by comparison of CA approach with the Finite Volume Method for the space discretization and Discontinuous Galerkin Method for the implicit time discretization of pedestrian flow model.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Modelling of Natural Phenomena
ISSN
0973-5348
e-ISSN
—
Volume of the periodical
16
Issue of the periodical within the volume
March 3, 2021
Country of publishing house
FR - FRANCE
Number of pages
18
Pages from-to
11
UT code for WoS article
000626127800005
EID of the result in the Scopus database
2-s2.0-85102122438