All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Effect of manganese promotion on the activity and selectivity of cobalt catalysts for CO preferential oxidation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439874" target="_blank" >RIV/00216208:11320/21:10439874 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=SuuVPuTkKx" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=SuuVPuTkKx</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.apcatb.2021.120397" target="_blank" >10.1016/j.apcatb.2021.120397</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Effect of manganese promotion on the activity and selectivity of cobalt catalysts for CO preferential oxidation

  • Original language description

    The preferential oxidation of CO in H2-rich mixtures (COPrOx) is a major catalytic reaction utilized for hydrogen purification. In the exploration of alternatives to noble metals, cobalt-based catalysts appear to be a very promising choice. The activity and stability of cobalt in the COPrOx reaction can be improved by the addition of transition metals and manganese is maybe the most prominent among them. Yet, the arrangement of the two components in the catalytically active state is largely unknown, which hinders in-depth understanding of the manganese promotion effect. Here, we compare pure and Mn-modified cobalt catalysts and correlate their structural and chemical characteristics with their COPrOx performance. The Mn-promoted cobalt catalyst is significantly more active than pure cobalt especially at intermediate reaction temperatures (around 200 degrees C). The addition of Mn improves the structural stability of the catalyst and helps to maintain higher specific surface areas. Chemical and microstructural analysis using various operando and in situ techniques revealed that Mn promotes CO conversion by partially stabilizing CoO phase during reaction conditions. It is also suggested that at high temperature, Mn suppress CO methanation reaction but promotes H2 oxidation. Apart of the particular interest in COPrOx reaction, in a general context, this work shows how the spatial distribution of the different catalyst components at nanoscopic level, may affect the surface chemistry and consequently control the reactivity.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    <a href="/en/project/LM2018116" target="_blank" >LM2018116: Surface Physics Laboratory - Materials Science Beamline</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Catalysis B: Environmental

  • ISSN

    0926-3373

  • e-ISSN

  • Volume of the periodical

    297

  • Issue of the periodical within the volume

    Nov

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    16

  • Pages from-to

    120397

  • UT code for WoS article

    000696992200005

  • EID of the result in the Scopus database

    2-s2.0-85107641423