All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Iron and copper nanoparticles inside and outside carbon nanotubes: Nanoconfinement, migration, interaction and catalytic performance in Fischer-Tropsch synthesis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439889" target="_blank" >RIV/00216208:11320/21:10439889 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KemqposIP3" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KemqposIP3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jcat.2021.09.034" target="_blank" >10.1016/j.jcat.2021.09.034</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Iron and copper nanoparticles inside and outside carbon nanotubes: Nanoconfinement, migration, interaction and catalytic performance in Fischer-Tropsch synthesis

  • Original language description

    Carbon materials have attracted increasing attention as supports for metal catalysts. Iron-containing carbon nanotubes often promoted with copper have found application in Fischer-Tropsch synthesis, which provides an alternative way for conversion of renewable feedstocks to chemicals and fuels. In carbon nanotubes, the active phase can be nanoconfined inside the channels or localized on the outer surface. In most of previous work, the distribution of metal nanoparticles inside or outside carbon nanotubes is considered to be immobile during the catalyst activation or catalytic reaction. In this paper, we uncovered remarkable mobility of both iron and copper species in the bimetallic catalysts between inner carbon nanotube channels and outer surface, which occurs in carbon monoxide and syngas, while almost no migration of iron species proceeds in the monometallic catalysts. This mobility is enhanced by noticeable fragility and defects in carbon nanotubes, which appear on their impregnation with the acid solutions of metal precursors and precursor decomposition. Remarkable mobility of iron and copper species in bimetallic catalysts affects the genesis of iron active sites, and enhances interaction of iron with the promoter. In the bimetallic iron-copper catalysts, the major increase in the activity was attributed to a higher reaction turnover frequency over iron surface sites located in a close proximity with copper. (c) 2021 Elsevier Inc. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    <a href="/en/project/LM2018116" target="_blank" >LM2018116: Surface Physics Laboratory - Materials Science Beamline</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Catalysis

  • ISSN

    0021-9517

  • e-ISSN

  • Volume of the periodical

    404

  • Issue of the periodical within the volume

    Dec

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

    306-323

  • UT code for WoS article

    000720356400003

  • EID of the result in the Scopus database

    2-s2.0-85117779906