All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Magnetic reconnection as a mechanism to produce multiple thermal proton populations and beams locally in the solar wind

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439899" target="_blank" >RIV/00216208:11320/21:10439899 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=bNaK6N.Cjy" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=bNaK6N.Cjy</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1051/0004-6361/202141149" target="_blank" >10.1051/0004-6361/202141149</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Magnetic reconnection as a mechanism to produce multiple thermal proton populations and beams locally in the solar wind

  • Original language description

    Context. Spacecraft data revealed early on the frequent observation of multiple near-thermal proton populations in the solar wind. Decades of research on their origin have focused on processes such as magnetic reconnection in the low corona and wave-particle interactions in the corona and locally in the solar wind. Aims. This study aims to highlight the fact that such multiple thermal proton populations and beams are also produced by magnetic reconnection occurring locally in the solar wind. Methods. We used high-resolution Solar Orbiter proton velocity distribution function measurements, complemented by electron and magnetic field data, to analyze the association of multiple thermal proton populations and beams with magnetic reconnection during a period of slow Alfvenic solar wind on 16 July 2020. Results. At least six reconnecting current sheets with associated multiple thermal proton populations and beams, including a case of magnetic reconnection at a switchback boundary, were found on this day. This represents 2% of the measured distribution functions. We discuss how this proportion may be underestimated, and how it may depend on solar wind type and distance from the Sun. Conclusions. Although suggesting a likely small contribution, but which remains to be quantitatively assessed, Solar Orbiter observations show that magnetic reconnection must be considered as one of the mechanisms that produce multiple thermal proton populations and beams locally in the solar wind.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    <a href="/en/project/GA19-18993S" target="_blank" >GA19-18993S: Transport of energy of solar wind variations from larger to smaller scales</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Astronomy &amp; Astrophysics

  • ISSN

    0004-6361

  • e-ISSN

  • Volume of the periodical

    656

  • Issue of the periodical within the volume

    Dec

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    8

  • Pages from-to

    A37

  • UT code for WoS article

    000730246400052

  • EID of the result in the Scopus database

    2-s2.0-85121645079