All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Universal Lemmatizer: A sequence-To-sequence model for lemmatizing Universal Dependencies treebanks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439926" target="_blank" >RIV/00216208:11320/21:10439926 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DcJ.DPdZ39" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DcJ.DPdZ39</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S1351324920000224" target="_blank" >10.1017/S1351324920000224</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Universal Lemmatizer: A sequence-To-sequence model for lemmatizing Universal Dependencies treebanks

  • Original language description

    In this paper, we present a novel lemmatization method based on a sequence-To-sequence neural network architecture and morphosyntactic context representation. In the proposed method, our context-sensitive lemmatizer generates the lemma one character at a time based on the surface form characters and its morphosyntactic features obtained from a morphological tagger. We argue that a sliding window context representation suffers from sparseness, while in majority of cases the morphosyntactic features of a word bring enough information to resolve lemma ambiguities while keeping the context representation dense and more practical for machine learning systems. Additionally, we study two different data augmentation methods utilizing autoencoder training and morphological transducers especially beneficial for low-resource languages. We evaluate our lemmatizer on 52 different languages and 76 different treebanks, showing that our system outperforms all latest baseline systems. Compared to the best overall baseline, UDPipe Future, our system outperforms it on 62 out of 76 treebanks reducing errors on average by 19% relative. The lemmatizer together with all trained models is made available as a part of the Turku-neural-parsing-pipeline under the Apache 2.0 license.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Natural Language Engineering

  • ISSN

    1351-3249

  • e-ISSN

    1469-8110

  • Volume of the periodical

    27

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    30

  • Pages from-to

    545-574

  • UT code for WoS article

    000692212500004

  • EID of the result in the Scopus database

    2-s2.0-85086474542