Universal Lemmatizer: A sequence-To-sequence model for lemmatizing Universal Dependencies treebanks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439926" target="_blank" >RIV/00216208:11320/21:10439926 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DcJ.DPdZ39" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DcJ.DPdZ39</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S1351324920000224" target="_blank" >10.1017/S1351324920000224</a>
Alternative languages
Result language
angličtina
Original language name
Universal Lemmatizer: A sequence-To-sequence model for lemmatizing Universal Dependencies treebanks
Original language description
In this paper, we present a novel lemmatization method based on a sequence-To-sequence neural network architecture and morphosyntactic context representation. In the proposed method, our context-sensitive lemmatizer generates the lemma one character at a time based on the surface form characters and its morphosyntactic features obtained from a morphological tagger. We argue that a sliding window context representation suffers from sparseness, while in majority of cases the morphosyntactic features of a word bring enough information to resolve lemma ambiguities while keeping the context representation dense and more practical for machine learning systems. Additionally, we study two different data augmentation methods utilizing autoencoder training and morphological transducers especially beneficial for low-resource languages. We evaluate our lemmatizer on 52 different languages and 76 different treebanks, showing that our system outperforms all latest baseline systems. Compared to the best overall baseline, UDPipe Future, our system outperforms it on 62 out of 76 treebanks reducing errors on average by 19% relative. The lemmatizer together with all trained models is made available as a part of the Turku-neural-parsing-pipeline under the Apache 2.0 license.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Natural Language Engineering
ISSN
1351-3249
e-ISSN
1469-8110
Volume of the periodical
27
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
30
Pages from-to
545-574
UT code for WoS article
000692212500004
EID of the result in the Scopus database
2-s2.0-85086474542