All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Parameter space factorization for zero-shot learning across tasks and languages

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439969" target="_blank" >RIV/00216208:11320/21:10439969 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=TsbpRe7Ziu" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=TsbpRe7Ziu</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1162/tacl_a_00374" target="_blank" >10.1162/tacl_a_00374</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Parameter space factorization for zero-shot learning across tasks and languages

  • Original language description

    Most combinations of NLP tasks and language varieties lack in-domain examples for supervised training because of the paucity of annotated data. How can neural models make sample-efficient generalizations from task-language combinations with available data to low-resource ones? In this work, we propose a Bayesian generative model for the space of neural parameters. We assume that this space can be factorized into latent variables for each language and each task. We infer the posteriors over such latent variables based on data from seen task-language combinations through variational inference. This enables zero-shot classification on unseen combinations at prediction time. For instance, given training data for named entity recognition (NER) in Vietnamese and for part-of-speech (POS) tagging in Wolof, our model can perform accurate predictions for NER in Wolof. In particular, we experiment with a typologically diverse sample of 33 languages from 4 continents and 11 families, and show that our model yields comparable or better results than state-of-the-art, zero-shot cross-lingual transfer methods. Our code is available at github.com/cambridgeltl/parameter-factorization.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Transactions of the Association for Computational Linguistics

  • ISSN

    2307-387X

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    01.02.2021

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    19

  • Pages from-to

    410-428

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85110409623