Analyzing BERT's Knowledge of Hypernymy via Prompting
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10440538" target="_blank" >RIV/00216208:11320/21:10440538 - isvavai.cz</a>
Result on the web
<a href="https://aclanthology.org/2021.blackboxnlp-1.20.pdf" target="_blank" >https://aclanthology.org/2021.blackboxnlp-1.20.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Analyzing BERT's Knowledge of Hypernymy via Prompting
Original language description
The high performance of large pretrained language models (LLMs) such as BERT (Devlin et al., 2019) on NLP tasks has prompted questions about BERT's linguistic capabilities, and how they differ from humans'. In this paper, we approach this question by examining BERT's knowledge of lexical semantic relations. We focus on hypernymy, the "is-a" relation that relates a word to a superordinate category. We use a prompting methodology to simply ask BERT what the hypernym of a given word is. We find that, in a setting where all hypernyms are guessable via prompting, BERT knows hypernyms with up to 57% accuracy. Moreover, BERT with prompting outperforms other unsupervised models for hypernym discovery even in an unconstrained scenario. However, BERT's predictions and performance on a dataset containing uncommon hyponyms and hypernyms indicate that its knowledge of hypernymy is still limited.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GX19-26934X" target="_blank" >GX19-26934X: Neural Representations in Multi-modal and Multi-lingual Modeling</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 4th Workshop on Analyzing and Interpreting Neural Networks for NLP
ISBN
978-1-955917-06-3
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
275-282
Publisher name
Association for Computational Linguistics
Place of publication
Stroudsburg, PA, USA
Event location
Punta Cana, Dominican Republic
Event date
Nov 11, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—