Examining Cross-lingual Contextual Embeddings with Orthogonal Structural Probes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10440559" target="_blank" >RIV/00216208:11320/21:10440559 - isvavai.cz</a>
Result on the web
<a href="https://aclanthology.org/2021.emnlp-main.376.pdf" target="_blank" >https://aclanthology.org/2021.emnlp-main.376.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Examining Cross-lingual Contextual Embeddings with Orthogonal Structural Probes
Original language description
State-of-the-art contextual embeddings are obtained from large language models available only for a few languages. For others, we need to learn representations using a multilingual model. There is an ongoing debate on whether multilingual embeddings can be aligned in a space shared across many languages. The novel Orthogonal Structural Probe (Limisiewicz and Mareček, 2021) allows us to answer this question for specific linguistic features and learn a projection based only on mono-lingual annotated datasets. We evaluate syntactic (UD) and lexical (WordNet) structural information encoded inmBERT's contextual representations for nine diverse languages. We observe that for languages closely related to English, no transformation is needed. The evaluated information is encoded in a shared cross-lingual embedding space. For other languages, it is beneficial to apply orthogonal transformation learned separately for each language. We successfully apply our findings to zero-shot and few-shot cross-lingual parsi
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)
ISBN
978-1-955917-09-4
ISSN
—
e-ISSN
—
Number of pages
10
Pages from-to
4589-4598
Publisher name
Association for Computational Linguistics
Place of publication
Stroudsburg, PA, USA
Event location
Punta Cana, Dominican Republic
Event date
Nov 7, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—