All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Examining Cross-lingual Contextual Embeddings with Orthogonal Structural Probes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10440559" target="_blank" >RIV/00216208:11320/21:10440559 - isvavai.cz</a>

  • Result on the web

    <a href="https://aclanthology.org/2021.emnlp-main.376.pdf" target="_blank" >https://aclanthology.org/2021.emnlp-main.376.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Examining Cross-lingual Contextual Embeddings with Orthogonal Structural Probes

  • Original language description

    State-of-the-art contextual embeddings are obtained from large language models available only for a few languages. For others, we need to learn representations using a multilingual model. There is an ongoing debate on whether multilingual embeddings can be aligned in a space shared across many languages. The novel Orthogonal Structural Probe (Limisiewicz and Mareček, 2021) allows us to answer this question for specific linguistic features and learn a projection based only on mono-lingual annotated datasets. We evaluate syntactic (UD) and lexical (WordNet) structural information encoded inmBERT&apos;s contextual representations for nine diverse languages. We observe that for languages closely related to English, no transformation is needed. The evaluated information is encoded in a shared cross-lingual embedding space. For other languages, it is beneficial to apply orthogonal transformation learned separately for each language. We successfully apply our findings to zero-shot and few-shot cross-lingual parsi

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)

  • ISBN

    978-1-955917-09-4

  • ISSN

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    4589-4598

  • Publisher name

    Association for Computational Linguistics

  • Place of publication

    Stroudsburg, PA, USA

  • Event location

    Punta Cana, Dominican Republic

  • Event date

    Nov 7, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article