AggGen: Ordering and Aggregating while Generating
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10440587" target="_blank" >RIV/00216208:11320/21:10440587 - isvavai.cz</a>
Result on the web
<a href="https://aclanthology.org/2021.acl-long.113" target="_blank" >https://aclanthology.org/2021.acl-long.113</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2021.acl-long.113" target="_blank" >10.18653/v1/2021.acl-long.113</a>
Alternative languages
Result language
angličtina
Original language name
AggGen: Ordering and Aggregating while Generating
Original language description
We present AggGen (pronounced 'again') a data-to-text model which re-introduces two explicit sentence planning stages into neural data-to-text systems: input ordering and input aggregation. In contrast to previous work using sentence planning, our model is still end-to-end: AggGen performs sentence planning at the same time as generating text by learning latent alignments (via semantic facts) between input representation and target text. Experiments on the WebNLG and E2E challenge data show that by using fact-based alignments our approach is more interpretable, expressive, robust to noise, and easier to control, while retaining the advantages of end-to-end systems in terms of fluency. Our code is available at https://github.com/XinnuoXu/AggGen.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing
ISBN
978-1-954085-52-7
ISSN
—
e-ISSN
—
Number of pages
16
Pages from-to
1419-1434
Publisher name
Association for Computational Linguistics
Place of publication
Stroudsburg, PA, USA
Event location
Online
Event date
Aug 2, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—