All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

AUGVIC: Exploiting BiText Vicinity for Low-Resource NMT

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10440902" target="_blank" >RIV/00216208:11320/21:10440902 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    AUGVIC: Exploiting BiText Vicinity for Low-Resource NMT

  • Original language description

    The success of Neural Machine Translation (NMT) largely depends on the availability of large bitext training corpora. Due to the lack of such large corpora in low-resource language pairs, NMT systems often exhibit poor performance. Extra relevant monolingual data often helps, but acquiring it could be quite expensive, especially for low-resource languages. Moreover, domain mismatch between bitext (train/test) and monolingual data might degrade the performance. To alleviate such issues, we propose AUGVIC, a novel data augmentation framework for low-resource NMT which exploits the vicinal samples of the given bitext without using any extra monolingual data explicitly. It can diversify the in-domain bitext data with finer level control. Through extensive experiments on four low-resource language pairs comprising data from different domains, we have shown that our method is comparable to the traditional back-translation that uses extra in-domain monolingual data. When we combine the synthetic parallel data generated from AUGVIC with the ones from the extra monolingual data, we achieve further improvements. We show that AUGVIC helps to attenuate the discrepancies between relevant and distant-domain monolingual data in traditional back-translation. To understand the contributions of different components of AUGVIC, we perform an in-depth framework analysis.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

  • ISBN

    978-1-954085-54-1

  • ISSN

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    3034-3045

  • Publisher name

    Association for Computational Linguistics

  • Place of publication

    Stroudsburg

  • Event location

    online

  • Event date

    Aug 1, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article