All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Further generalized versions of Ilmanen lemma on insertion of C-(1,omega) or C-loc(1,omega) functions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441215" target="_blank" >RIV/00216208:11320/21:10441215 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DZ3eE.HvRE" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DZ3eE.HvRE</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14712/1213-7243.2021.031" target="_blank" >10.14712/1213-7243.2021.031</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Further generalized versions of Ilmanen lemma on insertion of C-(1,omega) or C-loc(1,omega) functions

  • Original language description

    This is a generalization of Ilmanen&apos;s lemma (which deals with linear modulus and functions on an open subset of R n). Here we extend the mentioned result from Hilbert spaces to some superreflexive spaces, in particular to L p spaces, p ELEMENT OF [2, oo). We also prove a &quot;global&quot; version of Ilmanen&apos;s lemma (where a C1,ω function is inserted between functions on an interval I SUBSET OF R).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Commentationes Mathematicae Universitatis Carolinae

  • ISSN

    0010-2628

  • e-ISSN

    1213-7243

  • Volume of the periodical

    62

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    11

  • Pages from-to

    445-455

  • UT code for WoS article

    000818514600005

  • EID of the result in the Scopus database

    2-s2.0-85125108469