Infusing Finetuning with Semantic Dependencies
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441618" target="_blank" >RIV/00216208:11320/21:10441618 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.a8a-gSDHQ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.a8a-gSDHQ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1162/tacl_a_00363" target="_blank" >10.1162/tacl_a_00363</a>
Alternative languages
Result language
angličtina
Original language name
Infusing Finetuning with Semantic Dependencies
Original language description
For natural language processing systems, two kinds of evidence support the use of text representations from neural language models "pretrained'' on large unannotated corpora: performance on application-inspired benchmarks (Peters et al., 2018, inter alia), and the emergence of syntactic abstractions in those representations (Tenney et al., 2019, inter alia). On the other hand, the lack of grounded supervision calls into question how well these representations can ever capture meaning (Bender and Koller, 2020). We apply novel probes to recent language models-specifically focusing on predicate-argument structure as operationalized by semantic dependencies (Ivanova et al., 2012)-and find that, unlike syntax, semantics is not brought to the surface by today's pretrained models. We then use convolutional graph encoders to explicitly incorporate semantic parses into task-specific finetuning, yielding benefits to natural language understanding (NLU) tasks in the GLUE benchmark. This approach demonstrates the potential for general-purpose (rather than task-specific) linguistic supervision, above and beyond conventional pretraining and finetuning. Several diagnostics help to localize the benefits of our approach.(1)
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Transactions of the Association for Computational Linguistics [online]
ISSN
2307-387X
e-ISSN
—
Volume of the periodical
9
Issue of the periodical within the volume
11.03.2021
Country of publishing house
US - UNITED STATES
Number of pages
17
Pages from-to
226-242
UT code for WoS article
000751952200014
EID of the result in the Scopus database
2-s2.0-85107894350