All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Infusing Finetuning with Semantic Dependencies

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441618" target="_blank" >RIV/00216208:11320/21:10441618 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.a8a-gSDHQ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.a8a-gSDHQ</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1162/tacl_a_00363" target="_blank" >10.1162/tacl_a_00363</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Infusing Finetuning with Semantic Dependencies

  • Original language description

    For natural language processing systems, two kinds of evidence support the use of text representations from neural language models &quot;pretrained&apos;&apos; on large unannotated corpora: performance on application-inspired benchmarks (Peters et al., 2018, inter alia), and the emergence of syntactic abstractions in those representations (Tenney et al., 2019, inter alia). On the other hand, the lack of grounded supervision calls into question how well these representations can ever capture meaning (Bender and Koller, 2020). We apply novel probes to recent language models-specifically focusing on predicate-argument structure as operationalized by semantic dependencies (Ivanova et al., 2012)-and find that, unlike syntax, semantics is not brought to the surface by today&apos;s pretrained models. We then use convolutional graph encoders to explicitly incorporate semantic parses into task-specific finetuning, yielding benefits to natural language understanding (NLU) tasks in the GLUE benchmark. This approach demonstrates the potential for general-purpose (rather than task-specific) linguistic supervision, above and beyond conventional pretraining and finetuning. Several diagnostics help to localize the benefits of our approach.(1)

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Transactions of the Association for Computational Linguistics [online]

  • ISSN

    2307-387X

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    11.03.2021

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    17

  • Pages from-to

    226-242

  • UT code for WoS article

    000751952200014

  • EID of the result in the Scopus database

    2-s2.0-85107894350