Can central bank speeches predict financial market turbulence? Evidence from an adaptive NLP sentiment index analysis using XGBoost machine learning technique
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441759" target="_blank" >RIV/00216208:11320/21:10441759 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=-HRnpoZ4br" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=-HRnpoZ4br</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cbrev.2021.12.002" target="_blank" >10.1016/j.cbrev.2021.12.002</a>
Alternative languages
Result language
angličtina
Original language name
Can central bank speeches predict financial market turbulence? Evidence from an adaptive NLP sentiment index analysis using XGBoost machine learning technique
Original language description
Central Bank speeches usually function as aggregators of internal quantitative and qualitative analysis of the institutions regarding the macro economy, the monetary policy and the health of the financial systems. Speeches usually function as a summary of the current status of a countries economic health, the undergoing trends and some future perspectives of the global economy. In this study departing from classical econometrics we employ natural language processing technologies in combination with machine learning techniques in order to filter out the most important signals in the corpus of speeches and translate into a sentiment index for forecasting the future financial markets behaviour. In our analysis, it is evident that central banker's expectations on economy tend to exhibit a predictive ability for financial markets turmoil. Using a combination of dictionaries which are either predefined or build based on historical speeches of the corpus we train an Extreme Gradient Boosting model that generates a sentiment index which signals turmoil with acceptable accuracy when passing a specific threshold.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Central Bank Review
ISSN
1303-0701
e-ISSN
1305-8800
Volume of the periodical
21
Issue of the periodical within the volume
4
Country of publishing house
TR - TURKEY
Number of pages
13
Pages from-to
141-153
UT code for WoS article
000756700800003
EID of the result in the Scopus database
2-s2.0-85121267850