Efficiency Analysis of Deeplearning4J Neural Network Classifiers in Development of Transition Based Dependency Parsers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441821" target="_blank" >RIV/00216208:11320/21:10441821 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=GrskjOjZwP" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=GrskjOjZwP</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/amset-2021-0006" target="_blank" >10.2478/amset-2021-0006</a>
Alternative languages
Result language
angličtina
Original language name
Efficiency Analysis of Deeplearning4J Neural Network Classifiers in Development of Transition Based Dependency Parsers
Original language description
Dependency parsing is a complex process in natural language text processing, text to semantic transformation. The efficiency improvement of dependency parsing is a current and an active research area in the NLP community. The paper presents four transitionbased dependency parser models with implementation using DL4J classifiers. The efficiency of the proposed models were tested with Hungarian language corpora. The parsing model uses a data representation form based on lightweight embedding and a novel morphological-description-vector format is proposed for the input layer. Based on the test experiments on parsing Hungarian text documents, the proposed list-based transitions parsers outperform the widespread stack-based variants.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Marisiensis Seria Technologica [online]
ISSN
2668-4217
e-ISSN
—
Volume of the periodical
18
Issue of the periodical within the volume
1
Country of publishing house
RO - ROMANIA
Number of pages
7
Pages from-to
33-39
UT code for WoS article
—
EID of the result in the Scopus database
—