All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Efficiency Analysis of Deeplearning4J Neural Network Classifiers in Development of Transition Based Dependency Parsers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441821" target="_blank" >RIV/00216208:11320/21:10441821 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=GrskjOjZwP" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=GrskjOjZwP</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2478/amset-2021-0006" target="_blank" >10.2478/amset-2021-0006</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Efficiency Analysis of Deeplearning4J Neural Network Classifiers in Development of Transition Based Dependency Parsers

  • Original language description

    Dependency parsing is a complex process in natural language text processing, text to semantic transformation. The efficiency improvement of dependency parsing is a current and an active research area in the NLP community. The paper presents four transitionbased dependency parser models with implementation using DL4J classifiers. The efficiency of the proposed models were tested with Hungarian language corpora. The parsing model uses a data representation form based on lightweight embedding and a novel morphological-description-vector format is proposed for the input layer. Based on the test experiments on parsing Hungarian text documents, the proposed list-based transitions parsers outperform the widespread stack-based variants.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>ost</sub> - Miscellaneous article in a specialist periodical

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta Marisiensis Seria Technologica [online]

  • ISSN

    2668-4217

  • e-ISSN

  • Volume of the periodical

    18

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    RO - ROMANIA

  • Number of pages

    7

  • Pages from-to

    33-39

  • UT code for WoS article

  • EID of the result in the Scopus database