Revisiting Tri-training of Dependency Parsers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10442278" target="_blank" >RIV/00216208:11320/21:10442278 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Revisiting Tri-training of Dependency Parsers
Original language description
We compare two orthogonal semi-supervised learning techniques, namely tri-training and pretrained word embeddings, in the task of dependency parsing. We explore language-specific FastText and ELMo embeddings and multilingual BERT embeddings. We focus on a low resource scenario as semi-supervised learning can be expected to have the most impact here. Based on treebank size and available ELMo models, we select Hungarian, Uyghur (a zero-shot language for mBERT) and Vietnamese. Furthermore, we include English in a simulated low-resource setting. We find that pretrained word embeddings make more effective use of unlabelled data than tri-training but that the two approaches can be successfully combined.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
ISBN
978-1-955917-09-4
ISSN
—
e-ISSN
—
Number of pages
17
Pages from-to
9457-9473
Publisher name
Association for Computational Linguistics
Place of publication
Stroudsburg
Event location
Punta Cana
Event date
Nov 7, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—