What Taggers Fail to Learn, Parsers Need the Most
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10442290" target="_blank" >RIV/00216208:11320/21:10442290 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
What Taggers Fail to Learn, Parsers Need the Most
Original language description
We present an error analysis of neural UPOS taggers to evaluate why using gold tags has such a large positive contribution to parsing performance while using predicted UPOS either harms performance or offers a negligible improvement. We also evaluate what neural dependency parsers implicitly learn about word types and how this relates to the errors taggers make, to explain the minimal impact using predicted tags has on parsers. We then mask UPOS tags based on errors made by taggers to tease away the contribution of UPOS tags that taggers succeed and fail to classify correctly and the impact of tagging errors.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)
ISBN
978-91-7929-614-8
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
309-314
Publisher name
Linköping University Electronic Press
Place of publication
Linköping
Event location
Reykjavik
Event date
May 31, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—