All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

aDFS: An Almost Depth-First-Search Distributed Graph-Querying System

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10456936" target="_blank" >RIV/00216208:11320/21:10456936 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    aDFS: An Almost Depth-First-Search Distributed Graph-Querying System

  • Original language description

    Graph processing is an invaluable tool for data analytics. In particular, pattern-matching queries enable flexible graph exploration and analysis, similar to what SQL provides for relational databases. Graph queries focus on following connections in the data; they are a challenging workload because even seemingly trivial queries can easily produce billions of intermediate results and irregular data access patterns. In this paper, we introduce aDFS: A distributed graphquerying system that can process practically any query fully in memory, while maintaining bounded runtime memory consumption. To achieve this behavior, aDFS relies on (i) almost depth-first (aDFS) graph exploration with some breadth-first characteristics for performance, and (ii) non-blocking dispatching of intermediate results to remote edges. We evaluate aDFS against state-of-the-art graph-querying (Neo4J and GraphFrames for Apache Spark), graph-mining (G-Miner, Fractal, and Peregrine), as well as dataflow joins (BiGJoin), and show that aDFS significantly outperforms prior work on a diverse selection of workloads.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    PROCEEDINGS OF THE 2021 USENIX ANNUAL TECHNICAL CONFERENCE

  • ISBN

    978-1-939133-23-6

  • ISSN

  • e-ISSN

  • Number of pages

    16

  • Pages from-to

    209-224

  • Publisher name

    USENIX Association

  • Place of publication

    BERKELEY

  • Event location

    US

  • Event date

    Jul 14, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000696708600014