All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Using linear algebra in decomposition of Farkas interpolants

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10430252" target="_blank" >RIV/00216208:11320/22:10430252 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Saupygyd2R" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Saupygyd2R</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10009-021-00641-z" target="_blank" >10.1007/s10009-021-00641-z</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Using linear algebra in decomposition of Farkas interpolants

  • Original language description

    The use of propositional logic and systems of linear inequalities over reals is a common means to model software for formal verification. Craig interpolants constitute a central building block in this setting for over-approximating reachable states, e.g. as candidates for inductive loop invariants. Interpolants for a linear system can be efficiently computed from a Simplex refutation by applying the Farkas&apos; lemma. However, these interpolants do not always suit the verification task-in the worst case, they can even prevent the verification algorithm from converging. This work introduces the decomposed interpolants, a fundamental extension of the Farkas interpolants, obtained by identifying and separating independent components from the interpolant structure, using methods from linear algebra. We also present an efficient polynomial algorithm to compute decomposed interpolants and analyse its properties. We experimentally show that the use of decomposed interpolants in model checking results in immediate convergence on instances where state-of-the-art approaches diverge. Moreover, since being based on the efficient Simplex method, the approach is very competitive in general.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA20-07487S" target="_blank" >GA20-07487S: Scalable Techniques for Analysis of Complex Properties of Computer Systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal on Software Tools for Technology Transfer

  • ISSN

    1433-2779

  • e-ISSN

    1433-2787

  • Volume of the periodical

    24

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    15

  • Pages from-to

    111-125

  • UT code for WoS article

    000681522900001

  • EID of the result in the Scopus database

    2-s2.0-85111923705