Saliency Methods Analysis for Paintings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10444529" target="_blank" >RIV/00216208:11320/22:10444529 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1145/3517031.3531629" target="_blank" >https://doi.org/10.1145/3517031.3531629</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3517031.3531629" target="_blank" >10.1145/3517031.3531629</a>
Alternative languages
Result language
angličtina
Original language name
Saliency Methods Analysis for Paintings
Original language description
The topic of visual saliency is well-known and spreads across numerous disciplines. In this paper, we examine how saliency models perform on images with specific characteristics. We explore a saliency of 14 different digitized paintings, all representing a biblical scene of The Last Supper. We evaluate the performance of different saliency models. The models are using the traditional approach as well as the deep learning approach. For the evaluation, we use three different metrics, AUC, NSS and CC. As ground truth, we use eye-tracking data from 35 participants. Our analysis shows that deep-learning methods predict the most salient parts of the paintings very similar to real eye fixations. We also checked the consistency of gaze patterns among the participants.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
ETRA '22: 2022 Symposium on Eye Tracking Research and Applications
ISBN
978-1-4503-9252-5
ISSN
—
e-ISSN
—
Number of pages
2
Pages from-to
1-2
Publisher name
Association for Computing MachineryNew YorkNYUnited States
Place of publication
Seattle WA USA
Event location
Seattle WA USA
Event date
Jun 8, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—