All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Evolution of Pluto's Impact-Deformed Ice Shell Below Sputnik Planitia Basin

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10445741" target="_blank" >RIV/00216208:11320/22:10445741 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=MuMkdPABq4" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=MuMkdPABq4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1029/2022JE007221" target="_blank" >10.1029/2022JE007221</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Evolution of Pluto's Impact-Deformed Ice Shell Below Sputnik Planitia Basin

  • Original language description

    Sputnik Planitia basin, the dominant surface feature of the dwarf planet Pluto, is located very close to the far point of Pluto-Charon tidal axis. This position is currently believed to be a result of whole body reorientation driven by the combination of (a) the uplift of a subsurface ocean in response to a basin-forming impact and (b) the nitrogen layer accumulated inside the basin. Since an ice shell made of pure water ice cannot maintain the uplift on timescales of billions of years, the presence of an insulating and highly viscous layer of methane clathrates at the base of the shell has recently been proposed. In this study, we solve the thermo-mechanical evolution of the ice shell in a 2D spherical axisymmetric geometry and evaluate the gravity anomaly associated with the evolving ice shell shape. Taking into account the effect of impact heating and stress-dependent rheology of both ice and clathrates, we show that a thick shell (&gt;= 200 km) loses the impact heat slowly which leads to fast uplift relaxation of the order of hundreds of million years. On the contrary, a thin shell (similar to 100 km) cools down quickly (similar to 10 Myr), becoming rigid and more likely to preserve the ocean/shell interface uplift till the present. These results suggest that a thick ocean may be present beneath Pluto&apos;s ice shell.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10500 - Earth and related environmental sciences

Result continuities

  • Project

    <a href="/en/project/GA22-20388S" target="_blank" >GA22-20388S: Evolving Ice Shells - processes shaping planetary ice shells inferred from numerical modelling</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Geophysical Research. Planets

  • ISSN

    2169-9097

  • e-ISSN

    2169-9100

  • Volume of the periodical

    127

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    e2022JE007221

  • UT code for WoS article

    000804006600001

  • EID of the result in the Scopus database

    2-s2.0-85132944974