GLMM Based Clustering of Multivariate Mixed Type Longitudinal Data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10446098" target="_blank" >RIV/00216208:11320/22:10446098 - isvavai.cz</a>
Result on the web
<a href="https://www.iwsm2022.com/wp-content/uploads/2022/08/IWSM2022Proceedings.pdf" target="_blank" >https://www.iwsm2022.com/wp-content/uploads/2022/08/IWSM2022Proceedings.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
GLMM Based Clustering of Multivariate Mixed Type Longitudinal Data
Original language description
Several GLMMs for longitudinal data of a mixed type are joined together. Then, a mixture of such models is proposed to classify units into groups differing in evolution patterns. Data from The European Union Statistics on Income and Living Conditions database (EU-SILC) are analysed.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 36th International Workshop on Statistical Modelling
ISBN
978-88-551-1309-0
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
337-342
Publisher name
EUT Edizioni Università di Trieste
Place of publication
Trieste
Event location
Trieste, Italy
Event date
Jul 18, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—