Fitting three-dimensional Laguerre tessellations by hierarchical marked point process models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10447210" target="_blank" >RIV/00216208:11320/22:10447210 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=hddOaxHewM" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=hddOaxHewM</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.spasta.2022.100658" target="_blank" >10.1016/j.spasta.2022.100658</a>
Alternative languages
Result language
angličtina
Original language name
Fitting three-dimensional Laguerre tessellations by hierarchical marked point process models
Original language description
We present a general statistical methodology for analysing a Laguerre tessellation data set viewed as a realization of a marked point process model. In the first step, for the points, we use a nested sequence of multiscale processes which constitute a flexible parametric class of pairwise interaction point process models. In the second step, for the marks/radii conditioned on the points, we consider various exponential family models where the canonical sufficient statistic is based on tessellation characteristics. For each step, parameter estimation based on maximum pseudolikelihood methods is tractable. For model selection, we consider maximized log pseudolikelihood functions for models of the radii conditioned on the points. Model checking is performed using global envelopes and corresponding tests in both steps and moreover by comparing observed and simulated tessellation characteristics in the second step. We apply our methodology for a 3D Laguerre tessellation data set representing the microstructure of a polycrystalline metallic material, where simulations under a fitted model may substitute expensive laboratory experiments. (C) 2022 Elsevier B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GA19-04412S" target="_blank" >GA19-04412S: New approaches to modeling and statistics of random sets</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Spatial Statistics [online]
ISSN
2211-6753
e-ISSN
—
Volume of the periodical
51
Issue of the periodical within the volume
51
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
14
Pages from-to
100658
UT code for WoS article
000821748200002
EID of the result in the Scopus database
2-s2.0-85129385685