All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fitting three-dimensional Laguerre tessellations by hierarchical marked point process models

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10447210" target="_blank" >RIV/00216208:11320/22:10447210 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=hddOaxHewM" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=hddOaxHewM</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.spasta.2022.100658" target="_blank" >10.1016/j.spasta.2022.100658</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fitting three-dimensional Laguerre tessellations by hierarchical marked point process models

  • Original language description

    We present a general statistical methodology for analysing a Laguerre tessellation data set viewed as a realization of a marked point process model. In the first step, for the points, we use a nested sequence of multiscale processes which constitute a flexible parametric class of pairwise interaction point process models. In the second step, for the marks/radii conditioned on the points, we consider various exponential family models where the canonical sufficient statistic is based on tessellation characteristics. For each step, parameter estimation based on maximum pseudolikelihood methods is tractable. For model selection, we consider maximized log pseudolikelihood functions for models of the radii conditioned on the points. Model checking is performed using global envelopes and corresponding tests in both steps and moreover by comparing observed and simulated tessellation characteristics in the second step. We apply our methodology for a 3D Laguerre tessellation data set representing the microstructure of a polycrystalline metallic material, where simulations under a fitted model may substitute expensive laboratory experiments. (C) 2022 Elsevier B.V. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GA19-04412S" target="_blank" >GA19-04412S: New approaches to modeling and statistics of random sets</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Spatial Statistics [online]

  • ISSN

    2211-6753

  • e-ISSN

  • Volume of the periodical

    51

  • Issue of the periodical within the volume

    51

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    14

  • Pages from-to

    100658

  • UT code for WoS article

    000821748200002

  • EID of the result in the Scopus database

    2-s2.0-85129385685