Noether charge formalism for Weyl invariant theories of gravity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10447254" target="_blank" >RIV/00216208:11320/22:10447254 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4ZTEacMXUr" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4ZTEacMXUr</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.106.064024" target="_blank" >10.1103/PhysRevD.106.064024</a>
Alternative languages
Result language
angličtina
Original language name
Noether charge formalism for Weyl invariant theories of gravity
Original language description
Gravitational theories invariant under transverse diffeomorphisms and Weyl transformations have the same classical solutions as the corresponding fully diffeomorphism invariant theories. However, they solve some of the problems related to the cosmological constant and in principle allow local energy nonconservation. In the present work, we obtain the Noether charge formalism for these theories. We first derive expressions for the Noether currents and charges corresponding to transverse diffeomorphisms and Weyl transformations, showing that the latter vanish identically. We then use these results to obtain an expression for a perturbation of a Hamiltonian corresponding to evolution along a transverse diffeomorphism generator. From this expression, we derive the first law of black hole mechanics, identifying the total energy, the total angular momentum, the Wald entropy, and the contributions of the cosmological constant perturbations and energy nonconservation. Lastly, we extend our formalism to derive the first law of causal diamonds.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review D
ISSN
2470-0010
e-ISSN
2470-0029
Volume of the periodical
2022
Issue of the periodical within the volume
106
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
064024
UT code for WoS article
001037459800014
EID of the result in the Scopus database
2-s2.0-85138217874