All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Rank-sensitive proportional aggregations in dynamic recommendation scenarios

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10448380" target="_blank" >RIV/00216208:11320/22:10448380 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=RPXhiLPyJ5" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=RPXhiLPyJ5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11257-021-09311-w" target="_blank" >10.1007/s11257-021-09311-w</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Rank-sensitive proportional aggregations in dynamic recommendation scenarios

  • Original language description

    In this paper, we focus on the problem of rank-sensitive proportionality preservation when aggregating outputs of multiple recommender systems in dynamic recommendation scenarios. We believe that individual recommenders may provide complementary views on the user&apos;s preferences or needs, and therefore, their proportional (i.e. unbiased) aggregation may be beneficial for the long-term user satisfaction. We propose an aggregation framework (FuzzDA) based on a modified D&apos;Hondt&apos;s algorithm (DA) for proportional mandates allocation. Specifically, we adjusted DA to register fuzzy membership of items and modified the selection procedure to balance both relevance and proportionality criteria. Furthermore, we propose several iterative votes assignment strategies and negative implicit feedback incorporation strategies to make FuzzDA framework applicable in dynamic recommendation scenarios. Overall, the framework should provide benefits w.r.t. long-term novelty of recommendations, diversity of recommended items as well as overall relevance. We evaluated FuzzDA framework thoroughly both in offline simulations and in online A/B testing. Framework variants outperformed baselines w.r.t. click-through rate (CTR) in most of the evaluated scenarios. Some variants of FuzzDA also provided the best or close-to-best iterative novelty (while maintaining very high CTR). While the impact of the framework variants on user-wise diversity was not so extensive, the trade-off between CTR and diversity seems reasonable.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GJ19-22071Y" target="_blank" >GJ19-22071Y: Flexible models for known-item search in large video collections</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    User Modelling and User-Adapted Interaction

  • ISSN

    0924-1868

  • e-ISSN

    1573-1391

  • Volume of the periodical

    32

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    62

  • Pages from-to

    685-746

  • UT code for WoS article

    000736936900001

  • EID of the result in the Scopus database

    2-s2.0-85122018051