Weak Coloring Numbers of Intersection Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10448437" target="_blank" >RIV/00216208:11320/22:10448437 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.4230/LIPIcs.SoCG.2022.39" target="_blank" >https://doi.org/10.4230/LIPIcs.SoCG.2022.39</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.SoCG.2022.39" target="_blank" >10.4230/LIPIcs.SoCG.2022.39</a>
Alternative languages
Result language
angličtina
Original language name
Weak Coloring Numbers of Intersection Graphs
Original language description
Weak and strong coloring numbers are generalizations of the degeneracy of a graph, where for a positive integer k, we seek a vertex ordering such that every vertex can (weakly respectively strongly) reach in k steps only few vertices that precede it in the ordering. Both notions capture the sparsity of a graph or a graph class, and have interesting applications in structural and algorithmic graph theory. Recently, Dvorák, McCarty, and Norin observed a natural volume-based upper bound for the strong coloring numbers of intersection graphs of well-behaved objects in Rd, such as homothets of a compact convex object, or comparable axis-aligned boxes. In this paper, we prove upper and lower bounds for the k-th weak coloring numbers of these classes of intersection graphs. As a consequence, we describe a natural graph class whose strong coloring numbers are polynomial in k, but the weak coloring numbers are exponential. We also observe a surprising difference in terms of the dependence of the weak coloring numbers on the dimension between touching graphs of balls (single-exponential) and hypercubes (double-exponential).
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LL2005" target="_blank" >LL2005: Algorithms and Complexity within and beyond Bounded Expansion</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Leibniz International Proceedings in Informatics, LIPIcs
ISBN
978-3-95977-227-3
ISSN
—
e-ISSN
—
Number of pages
15
Pages from-to
1-15
Publisher name
Schloss Dagstuhl -- Leibniz-Zentrum für Informatik
Place of publication
Dagstuhl, Germany
Event location
Berlín
Event date
Jun 7, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—