All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Neural-network-based estimation of normal distributions in black-box optimization

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10450929" target="_blank" >RIV/00216208:11320/22:10450929 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.14428/esann/2022.ES2022-113" target="_blank" >https://doi.org/10.14428/esann/2022.ES2022-113</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14428/esann/2022.ES2022-113" target="_blank" >10.14428/esann/2022.ES2022-113</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Neural-network-based estimation of normal distributions in black-box optimization

  • Original language description

    The paper presents a novel application of artificial neuralnetworks (ANNs) in the context of surrogate models for black-box opti-mization, i.e. optimization of objective functions that are accessed throughempirical evaluation. For active learning of surrogate models, a very im-portant role plays learning of multidimensional normal distributions, forwhich Gaussian processes (GPs) have been traditionally used. On theother hand, the research reported in this paper evaluated the applicabil-ity of two ANN-based methods to this end: combining GPs with ANNsand learning normal distributions with evidential ANNs. After methodssketch, the paper brings their comparison on a large collection of data fromsurrogate-assisted black-box optimization. It shows that combining GPsusing linear covariance functions with ANNs yields lower errors than theinvestigated methods of evidential learning.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LM2018131" target="_blank" >LM2018131: Czech National Infrastructure for Biological Data</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ESANN 2022 proceedings

  • ISBN

    978-2-87587-084-1

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    187-192

  • Publisher name

    i6doc.com

  • Place of publication

    Belgium

  • Event location

    Bruges, Belgium

  • Event date

    Oct 5, 2022

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article