A class of optimization problems motivated by rank estimators in robust regression
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10451924" target="_blank" >RIV/00216208:11320/22:10451924 - isvavai.cz</a>
Alternative codes found
RIV/61384399:31110/20:00056118 RIV/61384399:31140/20:00056118 RIV/61384399:31110/22:00056118 RIV/61384399:31140/22:00056118
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DyGvlr0MuH" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DyGvlr0MuH</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/02331934.2020.1812604" target="_blank" >10.1080/02331934.2020.1812604</a>
Alternative languages
Result language
angličtina
Original language name
A class of optimization problems motivated by rank estimators in robust regression
Original language description
A rank estimator in robust regression is a minimizer of a function which depends (in addition to other factors) on the ordering of residuals but not on their values. Here we focus on the optimization aspects of rank estimators. We distinguish two classes of functions: a class with a continuous and convex objective function (CCC), which covers the class of rank estimators known from statistics, and also another class (GEN), which is far more general. We propose efficient algorithms for both classes. For GEN we propose an enumerative algorithm that works in polynomial time as long as the number of regressors is. The proposed algorithm utilizes the special structure of arrangements of hyperplanes that occur in our problem and is superior to other known algorithms in this area. For the continuous and convex case, we propose an unconditionally polynomial algorithm finding the exact minimizer, unlike the heuristic or approximate methods implemented in statistical packages.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Optimization
ISSN
0233-1934
e-ISSN
1029-4945
Volume of the periodical
71
Issue of the periodical within the volume
8
Country of publishing house
GB - UNITED KINGDOM
Number of pages
31
Pages from-to
2241-2271
UT code for WoS article
000567971900001
EID of the result in the Scopus database
2-s2.0-85090782845