Inversion of the satellite observations of the tidally induced magnetic field in terms of 3-D upper-mantle electrical conductivity: method and synthetic tests
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10452082" target="_blank" >RIV/00216208:11320/22:10452082 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=jNpA-BzzZT" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=jNpA-BzzZT</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/gji/ggac015" target="_blank" >10.1093/gji/ggac015</a>
Alternative languages
Result language
angličtina
Original language name
Inversion of the satellite observations of the tidally induced magnetic field in terms of 3-D upper-mantle electrical conductivity: method and synthetic tests
Original language description
The interaction of the oceanic tidal flow with the Earth's main magnetic field provides a powerful natural source of electromagnetic (EM) energy suitable for suboceanic upper-mantle electrical conductivity sounding. In this paper, we have developed and tested a new frequency-domain, spherical harmonic-finite element approach to the inverse problem of global EM induction. It is set up for an effective inversion of satellite-observed tidally induced magnetic field in terms of 3-D structure of the electrical conductivity in the suboceanic upper mantle. Before proceeding to the inversion of Swarm-derived models of tidal magnetic signatures, we have performed a series of parametric studies, using the 3-D conductivity model WINTERC-e as a testbed. The WINTERC-e model has been derived using state-of-the-art laboratory conductivity measurements of mantle minerals, and thermal and compositional model of the lithosphere and upper mantle WINTERC-G. The latter model is based on the inversion of global surface waveforms, satellite gravity and gradiometry measurements, surface elevation and heat flow data in a thermodynamically self-consistent framework. Therefore, the WINTERC-e model, independent of any EM data, represents an ideal target for synthetic tests of the 3-D EM inversion. We tested the impact of the truncation degree of the spherical-harmonic expansion of the M-2 tidal signal, the effect of random noise in synthetic data and inclusion of the N-2 and O-1 tidal constituents on the ability to recover the suboceanic upper-mantle conductivity structure. We demonstrate that with suitable regularization we can successfully reconstruct the 3-D upper-mantle conductivity beneath world oceans. In the ideal noise-free case, the correlation coefficient between the target and recovered conductivity is greater than 0.8 in the 150-270 km depth range.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10500 - Earth and related environmental sciences
Result continuities
Project
<a href="/en/project/GA20-07378S" target="_blank" >GA20-07378S: Three-dimensional electrical conductivity in the Earth's mantle recovered from geomagnetic variations of magnetospheric, ionospheric, and tidal origin</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Geophysical Journal International
ISSN
0956-540X
e-ISSN
1365-246X
Volume of the periodical
229
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
18
Pages from-to
2115-2132
UT code for WoS article
000772624200004
EID of the result in the Scopus database
2-s2.0-85128204411