All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Inversion of the satellite observations of the tidally induced magnetic field in terms of 3-D upper-mantle electrical conductivity: method and synthetic tests

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10452082" target="_blank" >RIV/00216208:11320/22:10452082 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=jNpA-BzzZT" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=jNpA-BzzZT</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/gji/ggac015" target="_blank" >10.1093/gji/ggac015</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Inversion of the satellite observations of the tidally induced magnetic field in terms of 3-D upper-mantle electrical conductivity: method and synthetic tests

  • Original language description

    The interaction of the oceanic tidal flow with the Earth&apos;s main magnetic field provides a powerful natural source of electromagnetic (EM) energy suitable for suboceanic upper-mantle electrical conductivity sounding. In this paper, we have developed and tested a new frequency-domain, spherical harmonic-finite element approach to the inverse problem of global EM induction. It is set up for an effective inversion of satellite-observed tidally induced magnetic field in terms of 3-D structure of the electrical conductivity in the suboceanic upper mantle. Before proceeding to the inversion of Swarm-derived models of tidal magnetic signatures, we have performed a series of parametric studies, using the 3-D conductivity model WINTERC-e as a testbed. The WINTERC-e model has been derived using state-of-the-art laboratory conductivity measurements of mantle minerals, and thermal and compositional model of the lithosphere and upper mantle WINTERC-G. The latter model is based on the inversion of global surface waveforms, satellite gravity and gradiometry measurements, surface elevation and heat flow data in a thermodynamically self-consistent framework. Therefore, the WINTERC-e model, independent of any EM data, represents an ideal target for synthetic tests of the 3-D EM inversion. We tested the impact of the truncation degree of the spherical-harmonic expansion of the M-2 tidal signal, the effect of random noise in synthetic data and inclusion of the N-2 and O-1 tidal constituents on the ability to recover the suboceanic upper-mantle conductivity structure. We demonstrate that with suitable regularization we can successfully reconstruct the 3-D upper-mantle conductivity beneath world oceans. In the ideal noise-free case, the correlation coefficient between the target and recovered conductivity is greater than 0.8 in the 150-270 km depth range.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10500 - Earth and related environmental sciences

Result continuities

  • Project

    <a href="/en/project/GA20-07378S" target="_blank" >GA20-07378S: Three-dimensional electrical conductivity in the Earth's mantle recovered from geomagnetic variations of magnetospheric, ionospheric, and tidal origin</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Geophysical Journal International

  • ISSN

    0956-540X

  • e-ISSN

    1365-246X

  • Volume of the periodical

    229

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    18

  • Pages from-to

    2115-2132

  • UT code for WoS article

    000772624200004

  • EID of the result in the Scopus database

    2-s2.0-85128204411