All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Tracing real-valued reference rays in anisotropic viscoelastic media

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10452103" target="_blank" >RIV/00216208:11320/22:10452103 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KErrzdo2_5" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KErrzdo2_5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11200-022-0906-6" target="_blank" >10.1007/s11200-022-0906-6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Tracing real-valued reference rays in anisotropic viscoelastic media

  • Original language description

    The eikonal equation in an attenuating medium has the form of a complex-valued Hamilton-Jacobi equation and must be solved in terms of the complex-valued travel time. A very suitable approximate method for calculating the complex-valued travel time right in real space is represented by the perturbation from the reference travel time calculated along the real-valued reference rays to the complex-valued travel time defined by the complex-valued Hamilton-Jacobi equation. The real-valued reference rays are calculated using the reference Hamiltonian function. The reference Hamiltonian function is constructed using the complex-valued Hamiltonian function corresponding to a given complex-valued Hamilton-Jacobi equation. The ray tracing equations and the corresponding equations of geodesic deviation are often formulated in terms of the eigenvectors of the Christoffel matrix. Unfortunately, a complex-valued Christoffel matrix need not have all three eigenvectors at an S-wave singularity. We thus formulate the ray tracing equations and the corresponding equations of geodesic deviation using the eigenvalues of a complex-valued Christoffel matrix, without the eigenvectors of the Christoffel matrix. The resulting equations for the real-valued reference P-wave rays and the real-valued reference common S-wave rays are applicable everywhere, including S-wave singularities.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10500 - Earth and related environmental sciences

Result continuities

  • Project

    <a href="/en/project/GA20-06887S" target="_blank" >GA20-06887S: Seismic waves in heterogeneous anisotropic viscoelastic media</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Studia Geophysica et Geodaetica

  • ISSN

    0039-3169

  • e-ISSN

    1573-1626

  • Volume of the periodical

    66

  • Issue of the periodical within the volume

    3-4

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    21

  • Pages from-to

    124-144

  • UT code for WoS article

    000883430500003

  • EID of the result in the Scopus database

    2-s2.0-85141995162