APPROXIMATING MINIMUM REPRESENTATIONS OF KEY HORN FUNCTIONS*
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10452151" target="_blank" >RIV/00216208:11320/22:10452151 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=e9aiyRRwXO" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=e9aiyRRwXO</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/19M1275681" target="_blank" >10.1137/19M1275681</a>
Alternative languages
Result language
angličtina
Original language name
APPROXIMATING MINIMUM REPRESENTATIONS OF KEY HORN FUNCTIONS*
Original language description
Horn functions form an important subclass of Boolean functions and appear in many different areas of computer science and mathematics as a general tool to describe implications and dependencies. Finding minimum sized representations for such functions with respect to most commonly used measures is a computationally hard problem admitting a 2log1-o(1) n inapproximability bound. In this paper we consider the natural class of key Horn functions representing keys of relational databases. For this class, the minimization problems for most measures remain NP-hard. In this paper we provide logarithmic factor approximation algorithms for key Horn functions with respect to all such measures.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA19-19463S" target="_blank" >GA19-19463S: Boolean Representation Languages Complete for Unit Propagation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Computing
ISSN
0097-5397
e-ISSN
1095-7111
Volume of the periodical
51
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
23
Pages from-to
116-138
UT code for WoS article
000760359900004
EID of the result in the Scopus database
2-s2.0-85129472008