All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Learning a Propagation Complete Formula

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10452217" target="_blank" >RIV/00216208:11320/22:10452217 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-08011-1_15" target="_blank" >https://doi.org/10.1007/978-3-031-08011-1_15</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-08011-1_15" target="_blank" >10.1007/978-3-031-08011-1_15</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Learning a Propagation Complete Formula

  • Original language description

    Propagation complete formulas were introduced by Bordeaux and Marques-Silva (2012) as a possible target language for knowledge compilation. A CNF formula is propagation complete (PC) if for every partial assignment, the implied literals can be derived by unit propagation. Bordeaux and Marques-Silva (2012) proposed an algorithm for compiling a CNF formula into an equivalent PC formula which is based on incremental addition of so-called empowering implicates. In this paper, we propose a compilation algorithm based on the implicational structure of propagation complete formulas described by Kucera and Savicky (2020) and the algorithm for learning a definite Horn formula with closure and equivalence queries introduced by Atserias et al. (2021). We have implemented both approaches and compared them experimentally. Babka et al. (2013) showed that checking if a CNF formula admits an empowering implicate is an NP-complete problem. We propose a particular CNF encoding which allows us to use a SAT solver to check propagation completeness, or to find an empowering implicate.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA19-19463S" target="_blank" >GA19-19463S: Boolean Representation Languages Complete for Unit Propagation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    INTEGRATION OF CONSTRAINT PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND OPERATIONS RESEARCH, CPAIOR 2022

  • ISBN

    978-3-031-08010-4

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    18

  • Pages from-to

    214-231

  • Publisher name

    SPRINGER INTERNATIONAL PUBLISHING AG

  • Place of publication

    CHAM

  • Event location

    Los Angeles

  • Event date

    Jun 20, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000876685700015