All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

INFORMATION IN PROPOSITIONAL PROOFS AND ALGORITHMIC PROOF SEARCH

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10452385" target="_blank" >RIV/00216208:11320/22:10452385 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=W2s9w8mhFL" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=W2s9w8mhFL</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/jsl.2021.75" target="_blank" >10.1017/jsl.2021.75</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    INFORMATION IN PROPOSITIONAL PROOFS AND ALGORITHMIC PROOF SEARCH

  • Original language description

    We study from the proof complexity perspective the (informal) proof search problem (cf. [17, Sections 1.5 and 21.5]):Is there an optimal way to search for propositional proofs?We note that, as a consequence of Levin&apos;s universal search, for any fixed proof system there exists a time-optimal proof search algorithm. Using classical proof complexity results about reflection principles we prove that a time-optimal proof search algorithm exists without restricting proof systems iff a p-optimal proof system exists.To characterize precisely the time proof search algorithms need for individual formulas we introduce a new proof complexity measure based on algorithmic information concepts. In particular, to a proof system P we attach information-efficiency function i(P)(tau) assigning to a tautology a natural number, and we show that:i(P)(tau) characterizes time any P-proof search algorithm has to use on tau,for a fixed P there is such an information-optimal algorithm (informally: it finds proofs of minimal information content),a proof system is information-efficiency optimal (its information-efficiency function is minimal up to a multiplicative constant) iff it is p-optimal,for non-automatizable systems P there are formulas tau with short proofs but having large information measure i(P)(tau).We isolate and motivate the problem to establish unconditional super-logarithmic lower bounds for i(P)(tau) where no super-polynomial size lower bounds are known. We also point out connections of the new measure with some topics in proof complexity other than proof search.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Symbolic Logic

  • ISSN

    0022-4812

  • e-ISSN

  • Volume of the periodical

    2022

  • Issue of the periodical within the volume

    87

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

    852-869

  • UT code for WoS article

    000792183800001

  • EID of the result in the Scopus database

    2-s2.0-85117311692