All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Halfspace depth for general measures: the ray basis theorem and its consequences

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10452437" target="_blank" >RIV/00216208:11320/22:10452437 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=GP6VcyPcy" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=GP6VcyPcy</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00362-021-01259-8" target="_blank" >10.1007/s00362-021-01259-8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Halfspace depth for general measures: the ray basis theorem and its consequences

  • Original language description

    The halfspace depth is a prominent tool of nonparametric multivariate analysis. The upper level sets of the depth, termed the trimmed regions of a measure, serve as a natural generalization of the quantiles and inter-quantile regions to higher-dimensional spaces. The smallest non-empty trimmed region, coined the halfspace median of a measure, generalizes the median. We focus on the (inverse) ray basis theorem for the halfspace depth, a crucial theoretical result that characterizes the halfspace median by a covering property. First, a novel elementary proof of that statement is provided, under minimal assumptions on the underlying measure. The proof applies not only to the median, but also to other trimmed regions. Motivated by the technical development of the amended ray basis theorem, we specify connections between the trimmed regions, floating bodies, and additional equi-affine convex sets related to the depth. As a consequence, minimal conditions for the strict monotonicity of the depth are obtained. Applications to the computation of the depth and robust estimation are outlined.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GJ19-16097Y" target="_blank" >GJ19-16097Y: Geometric aspects of mathematical statistics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Statistical Papers

  • ISSN

    0932-5026

  • e-ISSN

    1613-9798

  • Volume of the periodical

    63

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    35

  • Pages from-to

    849-883

  • UT code for WoS article

    000686447500001

  • EID of the result in the Scopus database

    2-s2.0-85112859430