Halfspace depth for general measures: the ray basis theorem and its consequences
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10452437" target="_blank" >RIV/00216208:11320/22:10452437 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=GP6VcyPcy" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=GP6VcyPcy</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00362-021-01259-8" target="_blank" >10.1007/s00362-021-01259-8</a>
Alternative languages
Result language
angličtina
Original language name
Halfspace depth for general measures: the ray basis theorem and its consequences
Original language description
The halfspace depth is a prominent tool of nonparametric multivariate analysis. The upper level sets of the depth, termed the trimmed regions of a measure, serve as a natural generalization of the quantiles and inter-quantile regions to higher-dimensional spaces. The smallest non-empty trimmed region, coined the halfspace median of a measure, generalizes the median. We focus on the (inverse) ray basis theorem for the halfspace depth, a crucial theoretical result that characterizes the halfspace median by a covering property. First, a novel elementary proof of that statement is provided, under minimal assumptions on the underlying measure. The proof applies not only to the median, but also to other trimmed regions. Motivated by the technical development of the amended ray basis theorem, we specify connections between the trimmed regions, floating bodies, and additional equi-affine convex sets related to the depth. As a consequence, minimal conditions for the strict monotonicity of the depth are obtained. Applications to the computation of the depth and robust estimation are outlined.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GJ19-16097Y" target="_blank" >GJ19-16097Y: Geometric aspects of mathematical statistics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Statistical Papers
ISSN
0932-5026
e-ISSN
1613-9798
Volume of the periodical
63
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
35
Pages from-to
849-883
UT code for WoS article
000686447500001
EID of the result in the Scopus database
2-s2.0-85112859430