Impact of gigahertz and terahertz transport regimes on spin propagation and conversion in the antiferromagnet IrMn
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453331" target="_blank" >RIV/00216208:11320/22:10453331 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=3PQyIKGfq_" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=3PQyIKGfq_</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0077868" target="_blank" >10.1063/5.0077868</a>
Alternative languages
Result language
angličtina
Original language name
Impact of gigahertz and terahertz transport regimes on spin propagation and conversion in the antiferromagnet IrMn
Original language description
Control over spin transport in antiferromagnetic systems is essential for future spintronic applications with operational speeds extending to ultrafast time scales. Here, we study the transition from the gigahertz (GHz) to terahertz (THz) regime of spin transport and spin-to-charge current conversion (S2C) in the prototypical antiferromagnet IrMn by employing spin pumping and THz spectroscopy techniques. We reveal a factor of 4 shorter characteristic propagation lengths of the spin current at THz frequencies (& SIM;0.5 nm) as compared to GHz experiments (& SIM;2 nm). This observation may be attributed to different transport regimes. The conclusion is supported by extraction of sub-picosecond temporal dynamics of the THz spin current. We identify no relevant impact of the magnetic order parameter on S2C signals and no scalable magnonic transport in THz experiments. A significant role of the S2C originating from interfaces between IrMn and magnetic or non-magnetic metals is observed, which is much more pronounced in the THz regime and opens the door for optimization of the spin control at ultrafast time scales. (C) 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Physics Letters
ISSN
0003-6951
e-ISSN
1077-3118
Volume of the periodical
120
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
062408
UT code for WoS article
000753461500003
EID of the result in the Scopus database
2-s2.0-85124583076