Two-Phase Compressible/Incompressible Navier-Stokes System with Inflow-Outflow Boundary Conditions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453354" target="_blank" >RIV/00216208:11320/22:10453354 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=C9Fka~Wvq" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=C9Fka~Wvq</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00021-022-00715-1" target="_blank" >10.1007/s00021-022-00715-1</a>
Alternative languages
Result language
angličtina
Original language name
Two-Phase Compressible/Incompressible Navier-Stokes System with Inflow-Outflow Boundary Conditions
Original language description
We prove the existence of a weak solution to the compressible Navier-Stokes system with singular pressure that explodes when density achieves its congestion level. This is a quantity whose initial value evolves according to the transport equation. We then prove that the "stiff pressure" limit gives rise to the two-phase compressible/incompressible system with congestion constraint describing the free interface. We prescribe the velocity at the boundary and the value of density at the inflow part of the boundary of a general bounded C-2 domain. For the positive velocity flux, there are no restrictions on the size of the boundary conditions, while for the zero flux, a certain smallness is required for the last limit passage.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-04243S" target="_blank" >GA19-04243S: Partial differential equations in mechanics and thermodynamics of fluids</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Fluid Mechanics
ISSN
1422-6928
e-ISSN
1422-6952
Volume of the periodical
24
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
27
Pages from-to
87
UT code for WoS article
000829040100001
EID of the result in the Scopus database
2-s2.0-85134501078