All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

RANDOM 2-CELL EMBEDDINGS OF MULTISTARS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453968" target="_blank" >RIV/00216208:11320/22:10453968 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=c.4w0vq8Om" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=c.4w0vq8Om</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1090/proc/15899" target="_blank" >10.1090/proc/15899</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    RANDOM 2-CELL EMBEDDINGS OF MULTISTARS

  • Original language description

    Random 2-cell embeddings of a given graph G are obtained by choosing a random local rotation around every vertex. We analyze the expected number of faces, E[FG], of such an embedding which is equivalent to studying its average genus. So far, tight results are known for two families called monopoles and dipoles. We extend the dipole result to a more general family called multistars, i.e., loopless multigraphs in which there is a vertex incident with all the edges. In particular, we show that the expected number of faces of every multistar with n nonleaf edges lies in an interval of length 2/(n + 1) centered at the expected number of faces of an n-edge dipole. This allows us to derive bounds on E[FG] for any given graph G in terms of vertex degrees. We conjecture that E[FG] &lt;=O(n) for any simple n-vertex graph G.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA19-21082S" target="_blank" >GA19-21082S: Graphs and their algebraic properties</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the American Mathematical Society

  • ISSN

    0002-9939

  • e-ISSN

    1088-6826

  • Volume of the periodical

    150

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    3699-3713

  • UT code for WoS article

    000808522600001

  • EID of the result in the Scopus database

    2-s2.0-85133308483