Dislocation avalanches are like earthquakes on the micron scale
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10454390" target="_blank" >RIV/00216208:11320/22:10454390 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KVp42yWHQU" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KVp42yWHQU</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41467-022-29044-7" target="_blank" >10.1038/s41467-022-29044-7</a>
Alternative languages
Result language
angličtina
Original language name
Dislocation avalanches are like earthquakes on the micron scale
Original language description
Metallic microsamples deform in a sequence of abrupt strain bursts. Here, the authors demonstrate by analysing the elastic waves emitted by these bursts that this intermittent process resembles earthquakes in several aspects, although on completely different spatial and temporal scales. Compression experiments on micron-scale specimens and acoustic emission (AE) measurements on bulk samples revealed that the dislocation motion resembles a stick-slip process - a series of unpredictable local strain bursts with a scale-free size distribution. Here we present a unique experimental set-up, which detects weak AE waves of dislocation slip during the compression of Zn micropillars. Profound correlation is observed between the energies of deformation events and the emitted AE signals that, as we conclude, are induced by the collective dissipative motion of dislocations. The AE data also reveal a two-level structure of plastic events, which otherwise appear as a single stress drop. Hence, our experiments and simulations unravel the missing relationship between the properties of acoustic signals and the corresponding local deformation events. We further show by statistical analyses that despite fundamental differences in deformation mechanism and involved length- and time-scales, dislocation avalanches and earthquakes are essentially alike.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nature Communications [online]
ISSN
2041-1723
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
1975
UT code for WoS article
000783759500019
EID of the result in the Scopus database
2-s2.0-85128287627