All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Parameterized Complexity of Untangling Knots

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10454436" target="_blank" >RIV/00216208:11320/22:10454436 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4230/LIPIcs.ICALP.2022.88" target="_blank" >https://doi.org/10.4230/LIPIcs.ICALP.2022.88</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2022.88" target="_blank" >10.4230/LIPIcs.ICALP.2022.88</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Parameterized Complexity of Untangling Knots

  • Original language description

    Deciding whether a diagram of a knot can be untangled with a given number of moves (as a part of the input) is known to be NP-complete. In this paper we determine the parameterized complexity of this problem with respect to a natural parameter called defect. Roughly speaking, it measures the efficiency of the moves used in the shortest untangling sequence of Reidemeister moves. We show that the II- moves in a shortest untangling sequence can be essentially performed greedily. Using that, we show that this problem belongs to W[P] when parameterized by the defect. We also show that this problem is W[P]-hard by a reduction from Minimum axiom set.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GJ19-04113Y" target="_blank" >GJ19-04113Y: Advanced tools in combinatorics, topology and related areas</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Leibniz International Proceedings in Informatics, LIPIcs

  • ISBN

    978-3-95977-235-8

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    17

  • Pages from-to

    1-17

  • Publisher name

    Schloss Dagstuhl

  • Place of publication

    Dagstuhl

  • Event location

    Francie

  • Event date

    Jul 4, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article