M5-brane in the superspace approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10454788" target="_blank" >RIV/00216208:11320/22:10454788 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=sCWvgF96MD" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=sCWvgF96MD</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.106.026010" target="_blank" >10.1103/PhysRevD.106.026010</a>
Alternative languages
Result language
angličtina
Original language name
M5-brane in the superspace approach
Original language description
Motivated by Sen's spacetime prescription for the construction of theories with self-dual field strengths, we present a rigid superspace Lagrangian describing noninteracting tensor multiplets living on a stack of M5-branes and containing all the physical constraints on the fields, yielding the on-shell matching of the degrees of freedom. The geometric superspace approach adopted here offers a natural realization of superdiffeomorphisms and is particularly well suited for the coupling to supergravity. However, within this formulation the (anti-)self-duality property of the 3-form field strengths is lost when the superspace Lagrangian is trivially restricted to spacetime. We propose two main paths to address this issue: a first-order superspace extension of Sen's spacetime results, which, once trivially restricted to spacetime, yields all the dynamical equations including the (anti-)self-duality constraint on the 3-form field strengths, and a possible way to obtain a full superspace description of the theory, based on integral forms.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
<a href="/en/project/GX19-28628X" target="_blank" >GX19-28628X: Homotopy and Homology Methods and Tools Related to Mathematical Physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review D [online]
ISSN
2470-0029
e-ISSN
—
Volume of the periodical
106
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
21
Pages from-to
026010
UT code for WoS article
000835430500005
EID of the result in the Scopus database
2-s2.0-85135881364