All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

THE SHORT-TERM RATIONAL LANCZOS METHOD AND APPLICATIONS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455385" target="_blank" >RIV/00216208:11320/22:10455385 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=L7a8FDv6x8" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=L7a8FDv6x8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/21M1403254" target="_blank" >10.1137/21M1403254</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    THE SHORT-TERM RATIONAL LANCZOS METHOD AND APPLICATIONS

  • Original language description

    Rational Krylov subspaces have become a reference tool in dimension reduction procedures for several application problems. When data matrices are symmetric, a short-term recurrence can be used to generate an associated orthonormal basis. In the past this procedure was abandoned because it requires twice the number of linear system solves per iteration compared with the classical long-term method. We propose an implementation that allows one to obtain the rational subspace reduced matrices at lower overall computational costs than proposed in the literature by also conveniently combining the two system solves. Several applications are discussed where the short-term recurrence feature can be exploited to avoid storing the whole orthonormal basis. We illustrate the advantages of the proposed procedure with several examples.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal of Scientific Computing

  • ISSN

    1064-8275

  • e-ISSN

    1095-7197

  • Volume of the periodical

    44

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    28

  • Pages from-to

    "A2843"-"A2870"

  • UT code for WoS article

    000922908600001

  • EID of the result in the Scopus database

    2-s2.0-85140381001